Multicomponent Reactions

DOI: 10.1002/ange.200602836

A Ring-Expansion Methodology Involving Multicomponent Reactions: Highly Efficient Access to Polysubstituted Furan-Fused 1,4-Thiazepine Derivatives**

Cheng Ma,* Hanfeng Ding, Yiping Zhang, and Ming Bian

1,4-Thiazepine fragments are present in a wide range of natural and synthetic biologically active agents.^[1] Among these, analogues of 1,4-thiazepines fused with aryl and heteroaryl groups represent an important class of compounds with interesting pharmacological properties,^[2] such as antiarrhythmic, antispasmodic, angiogenic, and central nervous system activity, and are therefore promising synthetic targets for exploring novel physiologically active agents.^[3]

Ring transformations of heterocyclic compounds are an important area of chemistry from both theoretical and practical viewpoints. [4] Such processes may provide interesting synthetic routes to derivatives that can only be obtained with great difficulty or not at all by other procedures. We previously developed a facile method for the preparation of 3-aminofuran compounds [7] based on the nucleophilicity of N-heterocarbenes (NHCs) derived from thiazolium salts 1. [5,6] These aminofuran compounds could not be formed according to other established protocols. [8] It was proposed that the formation of the aromatic furan through ring opening of the spirocycle intermediate 2 provides the driving force to complete the tandem reaction (Scheme 1).

Scheme 1. Thiazolium-mediated multicomponent reaction for the synthesis of 3-aminofuran derivatives.

Although ketenes react efficiently with some nucleophiles, their reaction with carbenes has received only scant attention. [9] Moreover, to the best of our knowledge, carbene-triggered multicomponent reactions from ketenes have not

been disclosed thus far. As a part of our research into NHCs^[7] and ketene chemistry,^[10] we report herein a conceptually novel three-component synthesis of unique polysubstituted furan-fused 1,4-thiazepines from thiazolium salts, 1,1-disubstituted ketenes, and activated alkynes.^[11]

We began our investigations by looking into the reaction of 3-ethyl-4,5-dimethylthiazolium bromide (1a), 1,1-diphenylketene (3a), and dimethylacetylenedicarboxylate (DMAD) in the presence of NaH (Scheme 2). To our surprise, a three-

Scheme 2. Three-component reaction of thiazolium salt 1 a, diphenylketene (3 a), and DMAD.

component adduct **4** was isolated and the structure was unambiguously confirmed by single-crystal X-ray diffraction. ^[12] Interestingly, contrary to our previous results from the synthesis of 3-aminofurans, the yield of **4** was improved from 56% to 78% using iPr_2NEt as the base instead of sodium hydride.

The cyclization of ketenes have attracted enormous attention from organic chemists since their first preparation in 1905. [13,14] In this context, ketenes typically add to substrates across one of their cumulated double bonds to construct cyclic compounds. [15] Very recently, we found that aryl methyl ketenes acted as one-carbon components to form five-membered rings on reaction with 1-methylimidazole and DMAD. [10b] In contrast, notably both of the double bonds (C=C and C=O) in 1,1-diphenylketene were used in the assembly of the highly substituted bicyclic compound 4 in this reaction.

As ketenes are rarely isolable species and usually are generated as transient intermediates, (for example, by the action of diisopropylethylamine (Hunig's base) on acyl halides) the replacement of ketenes by their precursors (which were transformed to ketenes in situ) should be of greater synthetic interest. Thus we were pleased to find that the reaction of 1a, diphenylacetyl chloride (3b), and DMAD with iPr_2NEt (2.25 equiv) as the base proceeded smoothly and gave 4 in almost the same yield as in the reaction using 3a (Scheme 3).

Scheme 3. Three-component reaction of thiazolium salt $1\,a$, diphenylacetyl chloride $(3\,b)$, and DMAD.

^[*] Prof. C. Ma, H. Ding, Y. Zhang, M. Bian Department of Chemistry, Zhejiang University 20 Yugu Road, Hangzhou 310027 (P.R. China) Fax: (+86) 571-8795-3375 E-mail: mcorg@zju.edu.cn

^[**] Financial support from the National Natural Science Foundation of China is gratefully acknowledged.

Supporting information for this article is available on the WWW under http://www.angewandte.org or from the author.

Zuschriften

We investigated the effect of the reaction conditions by using 1a, α -methylphenylacetyl chloride (5a), and DMAD as the model system (Table 1). An initial screen of the solvents demonstrated that CH_2Cl_2 is the solvent of choice (entries 1)

Table 1: Reaction of thiazolium salt 1a, acetyl chloride 5a, and DMAD under differing conditions. [a]

Entry	Base	Solvent	T [°C]	t [h] ^[b]	Yield [%] ^[c]
1	<i>i</i> Pr₂NEt	CH ₂ Cl ₂	-20 to 25	8	64
2	<i>i</i> Pr₂NEt	CH_2Cl_2	-78 to 25	4	83
3	<i>i</i> Pr ₂ NEt	CH ₂ Cl ₂	-78 to 0	3	< 5
4	<i>i</i> Pr₂NEt	THF	-78 to 25	8	< 5
5	<i>i</i> Pr₂NEt	toluene	-25 to 25	8	0
6	<i>i</i> Pr ₂ NEt	CH_3CN	-40 to 25	8	45
7	<i>i</i> Pr₂NEt	DME	-65 to 25	9	0
8	NEt_3	CH_2Cl_2	-78 to 25	7	25
9	DBU	CH_2Cl_2	-78 to 25	8	0

[a] General conditions: 1a (1 mmol), 5a (1 mmol), DMAD (1.5 mmol), and base (2.25 mmol). [b] Reaction time for consuming all of the starting materials. [c] Yields of isolated products. DBU=1,8-diazabicyclo-[5.4.0]undec-7-ene, DME=1,2-dimethoxyethane.

and 2, Table 1). It was shown that the reaction temperature played a significant role in this transformation. The best yield was obtained when the reaction was conducted by adding a mixture of **5a** and DMAD dropwiseto the solution of **1a** and iPr_2NEt in CH_2Cl_2 at -78 °C, and then stirring the reaction mixture at room temperature for an additional four hours (entry 2, Table 1). Only a trace amount of product was obtained when the reaction temperature was maintained below 0 °C (entry 3, Table 1). Moreover, iPr_2NEt proved to be the optimum base among those we examined, and the yield decreased dramatically when another base such as $NEt_3^{[16]}$ or DBU was used (entries 8 and 9, Table 1).

As shown in Table 2, the reaction was found to be applicable to a variety of α -alkyl aryl acetyl chlorides 5, to

Table 2: Reaction of thiazolium salt 1a, α -alkyl arylacetyl chlorides 5, and DMAD for the synthesis of furan-fused 1,4-thiazepines 6a–k.

1a +
$$COCI$$
 + CO_2Me Pr_2NEt CO_2Me CO_2Me CO_2Me CO_2Me CO_2Me CO_2Me

Entry	R ¹	Ar	5	t [h] ^[a]	Yield of 6 [%] ^[b]
1	Me	Ph	5 a	4	6a , 83
2	Me	4-MeOC ₆ H ₄	5 b	5.5	6b , 85
3	Me	4-MeC ₆ H ₄	5 c	7	6c , 84
4	Me	1-naphthyl	5 d	9.5	6 d , 59
5	Me	4-CIC ₆ H ₄	5 e	8	6 e, 74
6	Me	4-BrC ₆ H ₄	5 f	7	6 f , 72
7	Me	2-CIC ₆ H ₄	5 g	3.5	6g , 81
8	Me	2-BrC ₆ H ₄	5 h	4.5	6h, 77
9	Me	3-CIC ₆ H ₄	5 i	7	6i , 83
10	Me	$4-NO_2C_6H_4$	5 j	17	6j , 28
11	Et	Ph	5 k	2.5	6 k , 91

[a] Reaction time for consumption of all of the starting materials. [b] Yields of isolated products.

give furan-fused 1,4-thiazepines $\bf 6a-i$ in good to excellent yields, regardless of whether the aromatic group of the acetyl chloride was bulky (entries 4, 7, and 8, Table 2), electron rich (entries 2–4), or electron poor (entries 5–9). However, the acetyl chlorides with an electron-rich aromatic group performed better than their electron-poor counterparts; for example, α -methyl 4-nitrophenylacetyl chloride afforded the product $\bf 6j$ in only 28 % yield (entry 10, Table 2). Moreover, a larger alkyl group on the acetyl chloride $\bf 5$ was shown to have some positive effects on the reaction, with a shorter reaction time observed for $\bf 5k$ (entry 11, Table 2) possibly because of the increased bulk assisting the ring-expansion step. $\bf ^{[17]}$

Furthermore, the reactions of 1,1-dialkyl acetyl chlorides **7a-d** with the thiazolium salt **1a** and DMAD were also investigated (Table 3). Under the same experimental conditions, the furo[2,3-c]thiazepines **8** were formed in good yields. In the case of the cyclic carboxylic chlorides **7c** and **7d**, the tricyclic products **8c** and **8d** were easily and efficiently formed from simple substrates.

Table 3: Formation of product **8 a–d** by the reaction of thiazolium salt **1 a**, 1,1-dialkyl acetyl chloride **7 a–d**, and DMAD.

Entry	Acetyl chlorid	le 7	$t [h]^{[a]}$	Product 8 , yield ^[b]		
1	COCI	7 a	7	H ₃ C S CH ₃ H ₃ C O ₂ Me	8a, 84%	
2	coci	7 b	7	H ₃ C	8b , 88%	
3	COCI	7 c	6	H ₃ C S CO ₂ Me	8c , 81%	
4	coci	7 d	7	H ₃ C S O CO ₂ Me	8d , 85%	

[a] Reaction time for consumption of all of the starting materials. [b] Yields of isolated products.

Next, we examined the reactions of the thiazolium salts **1b-g** from the commercially available thiazoles substituted in the 4- and 4,5-positions (Table 4). As a result, a range of furo[2,3-c]thiazepines **6l-6s** with various substituents were obtained in one step by simply mixing thiazolium salts, 1,1-disubstituted acetyl chlorides, and DMAD.

Finally, the scope of activated alkynes was studied. When diethylacetylenedicarboxylate was used as the alkyne component, the anticipated products **9** a–c were afforded from the corresponding substrates under the optimum conditions we had used for the reactions using DMAD (Scheme 4). To further increase the molecular diversity of this process, the possibility of using 4-oxo-2-alkynoates as the alkyne compo-

Table 4: Formation of product 6 by the reaction of thiazolium salts 1 b-g, acetyl chloride 5, and DMAD.

Entry	Tiazolium s	salt 1	Acetyl chlor	ide 5	t [h] ^[a]	Yield of 6 ^[b]	
1	S N O Me	16	COCI	5a	5.5	H_3C N CO_2Me CO_2Me	61 , 78%
2		16	COCI CH ₃	5 c	5	H_3C H_3C H_3C CO_2Me	6 m, 80%
3		16	COCI	5 e	7	H_3C N CO_2Me CO_2Me	6n, 74%
4	S N⊕ Br Bn	1c	COCI	5 k	6	H_3C N CO_2Me CO_2Me	6 0, 84%
5	S N [⊕] Br [©] Et	1 d		5 c	7	H ₃ C N CO ₂ Me	6p, 78%
6	S N O Br Bu	1 e		5 k	4.5	H ₃ C N CO ₂ Me	6 q , 86%
7	S N⊕ N⊕ Br	1 f		5 k	3	H ₃ C N CO ₂ Me	6r, 81%
8	AcO S N⊕ I Me	1 g		5 k	7	ACO S O O O O O O O O O O O O O O O O O O	6s , 71 %

[a] Reaction time for consumption of all of the starting materials. [b] Yields of isolated products.

Scheme 4. Products from diethylacetylenedicarboxylate and corresponding substrates.

nent was explored (Scheme 5). The preliminary results revealed that, when treated with sodium hydride, both aryland *tert*-butyl-substituted alkynes **10 a–d** performed well in these reactions and furnished 1,4-thiazepines **11 a–d** exclu-

sively.^[18] However, *i*Pr₂NEt proved to be unsuitable for this transformation with only trace amounts of the products detected.^[19]

The mechanism of this novel domino reaction has not been unequivocally established, but one reasonable possibility is outlined in Scheme 6. Thus, the thiazol-2-ylidene A, first generated in situ from a thiazolium salt, would react with the 1,1-disubstituted ketene to afford the zwitterion B. Presumably, for steric reasons, the latter would undergo an oxa-Michael addition to the activated alkyne, followed by intramolecular annulation to furnish the spirocycle intermediate C. Finally, the ring expansion of C would occur, thus providing the furothiazepine D through a [1,3] sigmatropic sulfur shift.[20]

In conclusion, we have developed a novel and very efficient ring-expansion process for the synthesis of furan-fused 1,4-thiazepine derivatives from thiazole-carbenetriggered multicomponent reactions, which involve activated alkynes and 1,1-disubstituted ketenes generated in situ. This process generates compounds with a high level of complexity from simple and readily accessible starting materials. Furthermore, the operational simplicity and good chemical vields, combined atomeconomic aspects and a small number of steps, make this new synthetic strategy highly attractive and promising for the formation of 1,4-thiazepine compounds with potential synthetic and biological uses.

Scheme 5. Three-component reaction of thiazolium salt 1a, diphenylketene (3a), and 4-oxo-2-alkynoates 10a-d.

Zuschriften

$$R^{2} \longrightarrow R^{3}$$

$$R^{3} \longrightarrow R^{4} \longrightarrow R^{5}$$

$$R^{4} \longrightarrow R^{5} \longrightarrow R^{4} \longrightarrow R^{5}$$

$$R^{3} \longrightarrow R^{3} \longrightarrow R^{4} \longrightarrow R^{5}$$

$$R^{3} \longrightarrow R^{4} \longrightarrow R^{5} \longrightarrow R^{3} \longrightarrow R^{4} \longrightarrow R^{5}$$

$$R^{3} \longrightarrow R^{4} \longrightarrow R^{5} \longrightarrow R^{5$$

Scheme 6. Proposed mechanism for the formation of furan-fused 1,4-thiazepine derivatives **D**. EWG = electron-withdrawing group.

Experimental Section

Representative procedure (Table 2, entry 1): iPr₂NEt (290 mg, 2.25 mmol) was added to a solution of thiazolium salt 1a (222 mg. 1.0 mmol) in anhydrous CH₂Cl₂ (3 mL) at -78 °C. After 10-15 min, a solution of α-methyl p-methylphenylacetyl chloride (183 mg, 1.0 mmol) and DMAD (213 mg, 1.5 mmol) in CH₂Cl₂ (2 mL) was added dropwise over 10 min and the reaction mixture was stirred at this temperature for 30 min. The reaction temperature was then raised slowly to RT over 4 h. On completion of the reaction, the solvent was removed under vacuum, the residue was quickly passed through a short pad of neutral Al₂O₃ (hexane/diethyl ether 5:1), and the product thus obtained was recrystallized from hexane to afford 6a (345 mg, 83 % yield) as a colorless solid: m.p. 124-126 °C; IR (film): $\tilde{v} = 3005, 2970, 1718, 1710, 1437, 1419, 1345, 1296, 828, 767 \text{ cm}^{-1};$ ¹H NMR (500 MHz, [D₆]DMSO, tetramethylsilane): $\delta = 7.32$ (t, J =7.5 Hz, 2H), 7.25 (t, J = 7.0 Hz, 1H), 7.11 (d, J = 7.5 Hz, 2H), 3.91 (s, 3H), 3.75 (s, 3H), 3.35–3.22 (m, 2H), 1.98 (s, 3H), 1.88 (s, 3H), 1.48 (s, 3H), 1.05 ppm (t, J = 7.0 Hz, 3H); ¹³C NMR (125 MHz, [D₆]DMSO, tetramethylsilane): $\delta = 164.5$, 157.8, 150.8, 147.2, 144.2, 136.5, 130.9, 128.6, 127.6, 126.7, 122.2, 118.4, 53.5, 52.7, 49.8, 44.3, 27.1, 22.8, 17.0, 14.7 ppm; HRMS (ESI): calcd for $C_{22}H_{25}NO_5SNa$: $[M+Na]^+$ 438.1346, found 438.1325.

Received: July 17, 2006

Published online: October 20, 2006

Keywords: carbenes · cyclization · ketenes · multicomponent reactions · ring expansion

- a) J. W. Skiles, J. T. Suh, B. E. Williams, P. R. Menard, J. N. Barton, B. Love, H. Jones, E. S. Neiss, A. Schwab, W. S. Mann, J. Med. Chem. 1986, 29, 784-796; b) H. Umemiya, H. Fukasawa, M. Ebisawa, L. Eyrolles, E. Kawachi, G. Eisenmann, H. Gronemeyer, Y. Hashimoto, K. Shudo, H. Kagechika, J. Med. Chem. 1997, 40, 4222-4234; c) A. M. Venkatesan, Y. Gu, O. Dos Santos, T. Abe, A. Agarwal, Y. Yang, P. J. Petersen, W. J. Weiss, T. S. Mansour, M. Nukaga, A. M. Hujer, R. A. Bonomo, J. R. Knox, J. Med. Chem. 2004, 47, 6556-6568.
- [2] a) R. Malli, M. Frieden, M. Trenker, W. F. Graier, J. Biol. Chem. 2005, 280, 12114–12122; b) N. Neamati, J. A. Turpin, H. E. Winslow, J. L. Christensen, K. Williamson, A. Orr, W. G. Rice, Y. Pommier, A. Garofalo, A. Brizzi, G. Campiani, J. Med. Chem.

- **1999**, *42*, 3334 3341; c) H. Maruenda, F. Johnson, *J. Med. Chem.* **1995**, *38*, 2145 2151.
- [3] a) A. Crescenza, M. Botta, F. Corelli, A. Santini, A. Tafi, J. Org. Chem. 1999, 64, 3019-3025; b) A. P. Ilyn, M. V. Loseva, V. Y. Vvedensky, E. B. Putsykina, S. E. Tkachenko, D. V. Kravchenko, A. V. Khvat, M. Y. Krasavin, A. V. Ivachtchenko, J. Org. Chem. 2006, 71, 2811-2819; c) B. J. Margolis, J. J. Swidorski, B. N. Rogers, J. Org. Chem. 2003, 68, 644-647.
- [4] For reviews of ring transformations of heterocyclic compounds, see: a) N. Vivona, S. Buscemi, V. Frenna, G. Gusmano, Adv. Heterocycl. Chem. 1993, 56, 49-154; b) G. Hajós, Z. Riedl, G. Kollenz, Eur. J. Org. Chem. 2001, 3405-3414.
- [5] a) R. Breslow, J. Am. Chem. Soc. 1958, 80, 3719-3726; b) R. Breslow, C. Schmuck, Tetrahedron Lett. 1996, 37, 8241-8242.
- [6] For recent reviews of the reactions of NHCs, see: a) Y. Cheng, O. Meth-Cohn, Chem. Rev. 2004, 104, 2507-2530; b) V. Nair, S. Bindu, V. Sreekumar, Angew. Chem. 2004, 116, 5240-5245; Angew. Chem. Int. Ed. 2004, 43, 5130-5135; c) V. Nair, C. Rajesh, A. U. Vinod, S. Bindu, A. R. Sreekanth, J. S. Mathen, L. Balagopal, Acc. Chem. Res. 2003, 36, 899-907.
- [7] a) C. Ma, Y. Yang, Org. Lett. 2005, 7, 1343-1345; b) C. Ma, H. Ding, G. Wu, Y. Yang, J. Org. Chem. 2005, 70, 8919-8923.
- [8] a) V. Nair, A. U. Vinod, *Chem. Commun.* 2000, 1019–1020;
 b) V. Nair, V. Sreekumar, S. Bindu, E. Suresh, *Org. Lett.* 2005, 7, 2297–2230.
- [9] For the reaction of ketenes with carbenes, see: a) J. H. Rigby, Z. Wang, Org. Lett. 2003, 5, 263-264; b) R. W. Hoffmann, W., Lilienblum, B. Dittrich, Chem. Ber. 1974, 107, 3395-3341;
 c) J. D. Colomvakos, I. Egle, J. Ma, D. L. Pole, T. T. Tidwell, J. Warkentin, J. Org. Chem. 1996, 61, 9522-9527.
- [10] a) H. Ding, C. Ma, Y. Yang, Y. Wang, Org. Lett. 2005, 7, 2125–2127; b) C. Ma, H. Ding, Y. Wang, Org. Lett. 2006, 8, 3133–3136.
- [11] For an overview of multicomponent reactions, see: a) Multicomponent Reactions (Eds.: J. Zhu, H. Bienaymé), Wiley-VCH, Weinheim, 2005. For recent reviews, see: b) D. J. Ramón, M. Yus, Angew. Chem. 2005, 117, 1628-1661; Angew. Chem. Int. Ed. 2005, 44, 1602-1634; c) C. Simon, T. Constantieux, J. Rodriguez, Eur. J. Org. Chem. 2004, 4957-4980; d) R. V. A. Orru, M. de Greef, Synthesis 2003, 1471; e) J. Zhu, Eur. J. Org. Chem. 2003, 1133-1144; f) H, Bienaymé, C. Hulme, G. Oddon, P. Schmitt, Chem. Eur. J. 2000, 6, 3321-3329; g) A. Dömling, I. Ugi, Angew. Chem. 2000, 112, 3300-3344; Angew. Chem. Int. Ed. 2000, 39, 3168-3210.
- [12] CCDC-614678 contains the supplementary crystallographic data for this paper. See Ref. [18].
- [13] H. Staudinger, Ber. Dtsch. Chem. Ges. 1905, 38, 1735–1739.
- [14] a) For a monograph, see: T. T. Tidwell, *Ketenes*, Wiley, New York, 1995; for reviews, see: b) T. T. Tidwell, *Eur. J. Org. Chem.* 2006, 563–576; c) J. Hyatt, R. W. Raynolds, *Org. React.* 1994, 45, 159–646; d) B. B. Snider, *Chem. Rev.* 1988, 88, 793–811.
- [15] For the cycloaddition of ketene through the C=O bond, see:
 a) D. C. England, C. G. Krespan, J. Am. Chem. Soc. 1965, 87, 4019-4020;
 b) T. DoMinh, O. P. Strautz, J. Am. Chem. Soc. 1970, 92, 1766-1768;
 c) S. Yamabe, T. Dai, T. Minato, T. Machiguchi, T. Hasegawa, J. Am. Chem. Soc. 1996, 118, 6518-6519;
 d) T. Machiguchi, J. Okamoto, Y. Morita, T. Hasegawa, S. Yamabe, T. Minato, J. Am. Chem. Soc. 2006, 128, 44-45.
- [16] Using NEt₃ as the base, dimethyl-(*E*)-2-diethylaminobutenoate was formed in 61% yield accompanied by product **6a**.
- [17] Unidentified products were obtained when monosubstituted ketenes were used in the reaction.
- [18] The structure of 11a was confirmed by X-ray crystallography. CCDC-619544 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc. cam.ac.uk/data_request/cif.

- [19] On comparison with the blank experiment without a thiazolium salt, the main un-isolable side product was derived from the reaction of ketene and alkyne in the presence of *i*Pr₂NEt.
- [20] For rearrangements in the thizaole system, see: a) P. J. Abbott, R. M. Acheson, U. Eisner, D. J. Watkin, J. R. Carruthers, J. Chem. Soc. Chem. Commun. 1975, 155–158; b) K. T. Potts, D. R. Choudhury, T. R. Westby, J. Org. Chem. 1976, 41, 187–191.

7961